COURSE GUIDE - short form

Academic year 2017 – 2018

Course name ¹	PCLP (3)				Course	e 2ISI04	2ISI04DF		
Course type ²	DF	Category ³	DI	Year of study	2	Semester	3	Number of credit points	3

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Industrial engineering	Total	L	Т	LB	Р	IS
Specialization	Specialization Inginery Security in Industry		28		28		16

Pre-requisites from the curriculum ⁵	Compulsory	Use of Computer in Statistical Analysis
	Recommended	Mathematical Analysis, FORTRAN Language

General objective ⁶	Capacity of selection, analise, sintese and adequate use of specific knolidge for develop coherent scientific argues, efficient practical methods, decisions and concret solutions in this field. Use of basic knolige for explication of physics and chemical aspects for material science.
Specific objectives ⁷	Students acquire theoretical and practical knowledge from courses and aplications, which allows them to correctly use the world libraries of performed programmes. Numerical Analysis should especially help students choose that software that best suits the problem they have to solve in the other subject matters from the curriculum. It is recomanded to use SPEE, SLATEC, IMSL and NAG software packeges. During the courses, the students will learn the basic theoretical notions on numerical methods used in the field of Materials Science and Engineering and during the laboratory courses the students will conduct practical experiments using the methods taught. Teaching is done by means of euristic conversation in order to engage the student in discussions on the methods used in numerical analysis.
Course description ⁸	Chapter 1. Discret random variables. Chapter 2. Continous random variables. Chapter 3. Probability distributions and probability density functions. Chapter 4. Moment generating functions. Chapter 5. Simple linear regression and corelation. Chapter 6. Masurement scales. Chapter 7. Statistical inference.

Assessment			Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰
	Class tests along the semester		Weeks 1-14	10 %
Continuous assessment	Activity during tutorials/laborate works/projects/practical work		40 %	
	Assignments		10 %	
Final assessment	Final assessment form ¹¹	Colloquium	Week 14	
	Examination procedures and conditions: 1. Writing paper		40 %	40 %

Course organizer	Lecturer PhD CONSTANTIN BORIS	
Teaching assistants	Lecturer PhD CONSTANTIN BORIS	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

 $^{^{\}rm 10}$ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium